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The Tsallis entropy and Fisher information entropy �matrix� are very important quantities expressing infor-
mation measures in nonextensive systems. Stationary and dynamical properties of the information entropies
have been investigated in the N-unit coupled Langevin model subjected to additive and multiplicative white
noise, which is one of typical nonextensive systems. We have made detailed, analytical and numerical study on
the dependence of the stationary-state entropies on additive and multiplicative noise, external inputs, couplings,
and number of constitutive elements �N�. By solving the Fokker-Planck equation �FPE� by both the proposed
analytical scheme and the partial difference equation method, transient responses of the information entropies
to an input signal and an external force have been investigated. We have calculated the information entropies
also with the use of the probability distribution derived by the maximum-entropy method, whose result is
compared to that obtained by the FPE. The Cramér-Rao inequality is shown to be expressed by the extended
Fisher entropy, which is different from the generalized Fisher entropy obtained from the generalized Kullback-
Leibler divergence in conformity with the Tsallis entropy. The effect of additive and multiplicative colored
noise on information entropies is discussed also.
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I. INTRODUCTION

In the last one-half century, considerable studies have
been made on the Boltzmann-Gibbs-Shannon entropy and
the Fisher information entropy �matrix�, both of which play
important roles in thermodynamics and statistical mechanics
of classical and quantum systems �1–7�. The entropy flux and
entropy production have been investigated in connection
with the space volume contraction �2�. In the information
geometry �8�, the Fisher information matrix provides us with
the distance between the neighboring points in the Riemann
space spanned by probability distributions. The Fisher infor-
mation matrix gives the lower bound of estimation errors in
the Cramér-Rao theorem. In a usual system consisting of N
particles, the entropy and energy are proportional to N �ex-
tensive�, and the probability distribution is given by the
Gaussian distribution belonging to the exponential family.

In recent years, however, many efforts have been made
for a study on nonextensive systems in which the physical
quantity of N particles is not proportional to N �9–11�. The
nonextensivity has been realized in various systems such as a
system with long-range interactions, a small-scale system
with large fluctuations in temperature and a multifractal sys-
tem �11,12�. Tsallis has proposed the generalized entropy
�called the Tsallis entropy hereafter� defined by �9,10�

Sq�t� =
k

�q − 1�
�1 −� p�x,t�qdx� �1�

=− k� p�x,t�q lnqp�x,t�dx , �2�

where q is the entropic index, p�x , t� denotes the probability
distribution of a state x at time t, the Boltzmann constant k is

hereafter unity, and lnq x expresses the q-logarithmic func-
tion defined by lnq x��1−x1−q� / �q−1�. The Tsallis entropy
accounts for the nonextensivity of the entropy in nonexten-
sive systems. In the limit of q→1, lnq x reduces to the nor-
mal ln x and then Sq�t� agrees with the Boltzmann-Gibbs-
Shannon entropy expressed by

S1�t� = −� p�x,t�ln p�x,t�dx . �3�

The probability distribution derived by the maximum-
entropy method �MEM� with the use of the Tsallis entropy is
given by non-Gaussian distribution �11�, which reduces to
the Gaussian and Cauchy distributions for q=1 and q=2,
respectively.

Many authors have discussed the Fisher information ma-
trix in nonextensive systems �13–24�. In order to derive the
generalized Fisher information matrix G whose components
are given by �19–24�

gij = gji = q� p�x�� � ln p�x�
��i

�� � ln p�x�
�� j

�dx , �4�

the generalized Kullback-Leibler distance of D�	p	p�� be-
tween the two distributions p and p� has been introduced,

D�	p	p�� = K�	p	p�� + K�	p�	p� , �5�

with

K�	p	p�� =� p�x�q�lnq p�x� − lnq p��x��dx

= −
1

�q − 1�
1 −� p�x�qp��x�1−qdx� , �6�

where p�x�= p�x ; ��i� and ��i denotes a set of parameters
specifying the distribution. In the limit of q→1, gij given by
Eq. �4� reduces to the conventional Fisher information ma-*hideohasegawa@goo.jp
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trix. It should be remarked that Csiszár �25� had proposed the
generalized divergence measure given by

DC�	p	p�� =� 
p��x�f� p�x�
p��x�

� + p�x�f� p��x�
p�x�

��dx , �7�

where f�x� is assumed to be a convex function with the con-
dition f�1�=0. For f�p�= p ln p, Eq. �7� yields the conven-
tional Kullback-Leibler divergence �26� given by

DKL�	p	p�� =� 
p�x�ln� p�x�
p��x�

� + p��x�ln� p��x�
p�x�

��dx .

�8�

Equation �7� for f�p�= �q−1�−1�pq− p� leads to the general-
ized Kullback-Leibler distance given by Eqs. �5� and �6�.
The generalized divergence given by Eq. �6�, which is in
conformity with the Tsallis entropy, is equivalent to the �
divergence of Amari �8� with q= �1−�� /2 �27,28�. The es-
cort probability and the generalized Fisher information ma-
trix are discussed in Refs. �19,20�. The Fisher information
entropy in the Cramér-Rao inequality has been studied for
nonextensive systems �16,20,21�.

Extensive studies on the Tsallis and Fisher entropies have
been made for reaction-diffusion systems, by using the MEM
with exact stationary and dynamical solutions for nonlinear
FPE �13,14,17,18�. These studies nicely unify the concept of
normal superdiffusion and subdiffusion by a single picture.

The purpose of the present paper is to investigate the sta-
tionary and dynamical properties of the information entro-
pies in the coupled Langevin model which has been widely
adopted for a study of various stochastic systems �for a re-
cent review, see �29��. The Langevin model subjected to
multiplicative noise is known to be one of typical nonexten-
sive systems �11�. Recently the coupled Langevin model sub-
jected to additive and multiplicative noise has been discussed
with the use of the augmented moment method �30� which is
the second-moment method for local and global variables
�31,32�. We will obtain the probability distribution of the
nonextensive, coupled Langevin model by using the Fokker-
Planck equation �FPE� method with the mean-field approxi-
mation. We have made a detailed study on effects on the
stationary information entropies of additive and multiplica-
tive white noise, external force, input signal, couplings and
the number of constituent elements in the adopted model. By
solving the FPE both by the proposed analytical scheme and
by the partial difference equation �PDE� method, we have
investigated the transient responses to an input signal and an
external force which are applied to the stationary state.

The outline of the paper is as follows. In Sec. II, we
describe the adopted, N-unit coupled Langevin model. Ana-
lytical expressions for the Tsallis entropy and generalized
Fisher information entropy in some limiting cases are pre-
sented. Numerical model calculations of stationary and dy-
namical entropies are reported. In Sec. III, discussions are
presented on the entropy flux and entropy production and on
a comparison between q-moment and normal-moment meth-
ods in which averages are taken over the escort and normal
distributions, respectively. We will also discuss effects of ad-
ditive and multiplicative colored noise on information entro-

pies, by using the result recently obtained by the functional-
integral method �33�. Section IV is devoted to our
conclusion. In the Appendix, we summarize the information
entropies calculated with the use of the probability distribu-
tion derived by the MEM. The Cramér-Rao inequality in
nonextensive systems is shown to be expressed by the ex-
tended Fisher information entropy which is different from
the generalized Fisher entropy.

II. COUPLED LANGEVIN MODEL

A. Adopted model

We have adopted the N-unit coupled Langevin model sub-
jected to additive and multiplicative white noise given by

dxi

dt
= F�xi� + ��i�t� + �G�xi��i�t� + Ii�t� , �9�

with

Ii�t� =
J

�N − 1� �
j��i�

�xj�t� − xi�t�� + I�t� �i = 1 to N� .

�10�

Here F�x� and G�x� denote arbitrary functions of x, J the
coupling strength, I�t� an external input, � and � are the
strengths of multiplicative and additive noise, respectively,
and �i�t� and �i�t� express zero-mean Gaussian white noises
with correlations given by

��i�t�� j�t��� = �ij��t − t�� , �11�

��i�t�� j�t��� = �ij��t − t�� , �12�

��i�t�� j�t��� = 0. �13�

We have adopted the mean-field approximation for Ii�t�
given by

Ii�t� � Ĵ��q�t� − xi�t�� + I�t� , �14�

with

Ĵ =
JN

�N − 1�
, �15�

�q�t� =
1

N
�

i

Eq�xi�t�� , �16�

where the Eq�¯� expresses the average over the escort dis-
tribution to be shown below �Eqs. �20�–�22��.

B. Fokker-Planck equation

Owing to the adopted mean-field approximation given by
Eq. �14�, each element of the ensemble is ostensibly inde-
pendent. The total probability distribution of p��xk , t� is
given by the product of that of each element,

p��xk,t� = 	ipi�xi,t� , �17�

where the FPE for pi�xi , t� in the Stratonovich representation
is given by
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�

�t
pi�xi,t� = −

�

�xi
�F�xi� + Ii�t��pi�xi,t� + ��2

2
� �2

�xi
2 pi�xi,t�

+ ��2

2
� �

�xi
G�xi�

�

�xi
G�xi�pi�xi,t� . �18�

The expectation value of �q�t� is given by

�q�t� = Eq�xi�t�� , �19�

with

Eq�xi�t�m� =� Piq�xi,t�xi
mdxi �m = 1,2� , �20�

where the escort probability distribution Piq�xi , t� is given by

Piq�xi,t� =
1

ciq�t�
pi�xi,t�q, �21�

ciq�t� =� pi�xi,t�qdxi. �22�

It is noted that �q�t� and pi�xi , t� are self-consistently deter-
mined from Eqs. �14� and �18�. The relevant fluctuation
�variance� of 
q�t�2 is given by


q�t�2 = Eq��xi − �q�2� . �23�

When we adopt F�x� and G�x� given by

F�x� = − �x , �24�

G�x� = x , �25�

where � denotes the relaxation rate, the FPE for p�x , t� is
expressed by �the subscript i is hereafter neglected�

�

�t
p�x,t� = �� + Ĵ +

�2

2
�p�x,t� + 
�� + Ĵ +

3�2

2
�x

− u�t�� �

�x
p�x,t� + ��2

2
x2 +

�2

2
� �2

�x2 p�x,t� ,

�26�

with

u�t� = Ĵ�q�t� + I�t� . �27�

From the FPE given by Eq. �26�, the stationary distribution is
given by �30,34,35�

ln p�x� � − �2� + 2Ĵ + �2

2�2 �ln��2x2 + �2� + Y�x� �28�

� − � 1

q − 1
�ln
1 + �q − 1�� x2

22�� + Y�x� , �29�

with

q = 1 +
2�2

�2� + 2Ĵ + �2�
, �30�

2 =
�2

�2� + 2Ĵ + �2�
, �31�

Y�x� = � 2u

��
�tan−1��x

�
� , �32�

u = Ĵ�q + I , �33�

where the entropic index is given for 1�q�3. Equation
�29� yields the q-Gaussian distribution given by

p�x� =
1

Zq
expq�−

x2

22�eY�x�, �34�

with

Zq =� expq�−
x2

22�eY�x�dx , �35�

where expq�x� stands for the q-exponential function defined
by expq�x���1+ �1−q�x�+

1/�1−q�, where �y�+=y for y�0 and
0 for y�0.

Some limiting cases of Eq. �34� are examined in the fol-
lowing.

�1� For �=0 and ��0 �i.e., additive noise only�,

p�x� =
1

�2�
1
2
e−�1/2
1

2��x − �1�2
, �36�

which yield

�1 =
22u

�2 =
u

�� + Ĵ�
, �37�


1
2 = 2 =

�2

2�� + Ĵ�
. �38�

�2� For ��0, �=0 �i.e., multiplicative noise only�
�30,34,35�,

p�x� =
1

Zq
	x	−�e−�/x��x/�� for u � 0, �39�

� 	x	−� for u = 0, �40�

with

Zq =
��� − 1�

��−1 =
���3 − q�/�q − 1��

��3−q�/�q−1� for u � 0, �41�

� =
2

�q − 1�
, �42�

� =
2u

�2 =
2�Ĵ�q + I�

�2 , �43�

where ��x� and ��x� denote the � and Heaviside functions,
respectively, and Zq diverges for u=0. For u�0, Eqs. �39�
and �41� yield
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�q =
q�q − 1�

2
� , �44�


q
2 =

q2�q − 1�3

4�3 − q�
�2. �45�

The distribution given by Eq. �39� has a peak at x=� /�
=�q /q.

�3� For ��0, ��0, u= Ĵ�q+ I=0 �i.e., without coupling
and external input� �30,34,35�,

p�x� =
1

Zq
expq�−

x2

22� , �46�

Zq = � 22

q − 1
�1/2

B�1

2
,

1

q − 1
−

1

2
� , �47�

which lead to

�q = 0, �48�


q
2 =

22

�3 − q�
=

�2

2�
. �49�

It is noted that when we adopt normal moments averaged
over the q-Gaussian given by

E�x�t�m� =� p�x,t�x�t�mdx , �50�

instead of the q moments given by Eq. �20�, its stationary
variance is given by 
2=E��x−E�x��2�=�2 /2��−�2� which
diverges at �=�2 �30�.

C. Tsallis entropy

With the use of the total distribution of p��xi� given by
Eq. �17�, the Tsallis entropies of single-unit and N-unit en-
sembles are given by

Sq
�1� = �1 − cq

q − 1
� , �51�

Sq
�N� = �1 − 	iciq

q − 1
� = �1 − cq

N

q − 1
� , �52�

with

cq = ciq =� pi�xi�qdxi. �53�

Eliminating cq from Eqs. �51� and �52�, we get

Sq
�N� = �

k=1

N

Ck
N�− 1�k−1�q − 1�k−1�Sq

�1��k �54�

=NSq
�1� −

N�N − 1�
2

�q − 1��Sq
�1��2 + ¯ , �55�

where Ck
N=N ! / �N−k� !k!. Equation �54� shows that the Tsal-

lis entropy is non-extensive except for q=1.0, for which Sq
�N�

reduces to the extensive Boltzmann-Gibbs-Shannon entropy,
S1

�N�=NS1
�1�.

Substituting the stationary distributions given by Eqs.
�36�, �39�, and �46� to Eq. �1�, we obtain the analytic expres-
sion for the Tsallis entropy of a single unit given by

Sq
�1� = �1

2
��1 + ln�2�
q

2�� for � = 0, � � 0, �56�

=�1 − cq

q − 1
� for � � 0, �57�

with

cq =
1

Zq
q

��q� − 1�
�q��q�−1 =

1

Zq
q

���q + 1�/�q − 1��
�q���q+1�/�q−1� �58�

for � � 0, � = 0, u � 0,

=
1

Zq
q� 22

q − 1
�1/2

B�1

2
,

q

q − 1
−

1

2
� = �3 − q

2
�Zq

1−q �59�

for � � 0, � � 0, u = 0,

where B�a ,b� stands for the � function, and Zq in Eqs. �58�
and �59� are given by Eqs. �41� and �47�, respectively.

D. Generalized Fisher information entropy

We consider the generalized Fisher information entropy
given by

gq = q� p�x�� � ln p�x�
��

�2

dx . �60�

From Eqs. �17� and �60�, the generalized Fisher entropy for
the N-unit system is given by

gq
�N� = qE
� � ln p�x�

��
�2� �61�

=q� ¯� ��
i

� ln pi�xi�
�� �2

	ipi�xi�dxi �62�

=q�
i
� � � ln pi�xi�

��
�2

pi�xi�dxi + �gq �63�

=Ngq
�1�, �64�

because the cross term �gq of Eq. �63� vanishes,

�gq = q �
i��j�

�
j
� � � ln pi�xi�

��
�pi�xi�dxi� � � ln pj�xj�

��
�

�pj�xj�dxj �65�

=q �
i��j�

�
j
� �pi�xi�

��
dxi� �pj�xj�

��
dxj �66�
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=q �
i��j�

�
j

�

��
� pi�xi�dxi

�

��
� pj�xj�dxj �67�

=0, �68�

where gq
�1� stands for the generalized Fisher entropy in a

single subsystem. The generalized Fisher information en-
tropy is extensive in the nonextensive system as shown in
�27�,

gq
�N� = Ngq

�1�. �69�

The probability distribution p�x� obtained by the FPE for our
Langevin model is determined by the six parameters of �, �,
�, J, I, and N. When we adopt �= I in Eq. �60�, for example,
we obtain the generalized Fisher entropy given by

gq = q�E
� �Y�x�
�I

�2� − E
� �Y�x�
�I

��2� , �70�

where E�¯� expresses the average over p�x� �Eq. �50��.
Alternatively we have adopted the generalized Fisher en-

tropy given by

gq = q� p�x�� � ln p�x�
�x

�2

dx , �71�

which is obtainable for gq with �=�q in Eq. �60� if p�x� is
given by the MEM �Eqs. �102� and �A10��. Although p�x�
derived by the FPE is not explicitly specified by �q and 
q

2,
we have employed Eq. �71� in our following discussion, ex-
pecting it is meaningful for both cases of the FPE and MEM.
Substituting the stationary distributions given by Eqs. �36�,
�39�, and �46� to Eq. �71�, we obtain the analytic expression
for the generalized Fisher entropy for N=1 given by

gq
�1� = � 1


1
2� =

2�� + Ĵ�
�2 for � = 0, � � 0, �72�

=� q

�2���� − 1��� + 2� =
q4


q
2 for � � 0, � = 0, u � 0,

�73�

=� 2q

�q − 1�2�B� 3
2 , 1

q−1 + 1
2�

B� 1
2 , 1

q−1 − 1
2� =

1


q
2

for � � 0, � � 0, u = 0, �74�

where 
q
2 in Eqs. �73� and �74� are given by Eqs. �45� and

�49�, respectively.

E. Stationary properties

1. Calculation method

The adopted Langevin model includes six parameters of
�, �, �, J, I, and N. The dependence of the Tsallis entropy
and generalized Fisher information entropy on these param-
eters has been studied by numerical methods. We have cal-
culated the distribution p�x� by the FPE �Eqs. �34� and �35��,

and also by direct simulations �DSs� for the Langevin model
�Eqs. �9� and �10�� with the Heun method: DS results are
averages of 100 trials.

2. Model calculations

Figures 1�a�–1�c� show three examples of the stationary
distribution p�x� for �I ,J�= �0.0,0.0�, �0.0,0.5�, and �0.5,0.5�
with �=1.0, �=0.5, �=0.5, and N=100. Solid curves show
the results calculated with the use of the FPE whereas dashed
curves show those of DSs for the Langevin equation: Both
results are in good agreement and indistinguishable. When
the coupling strength is increased from J=0.0 to J=0.5 with
I=0.0, the width of p�x� is decreased because of a decreased
2 in Eq. �31�. When an input of I=0.5 is applied, p�x�
changes its position by an amount of about 0.5 with a slight
variation of its shape: p�x� for �I ,J�= �0.5,0.5� is not a
simple translational shift of p�x� for �I ,J�= �0.0,0.5�.

In the following, we will discuss model calculations of the
dependence on �, �, I, J, and N, whose results are shown in
Figs. 2–6, respectively �dotted curves in the frames �a� and
�b� in Figs. 2–5 will be explained in Sec. III C�.

� dependence. First we show �q, 
q
2, Sq, and gq in Figs.

2�a�–2�d�, respectively, plotted as a function of �2 for I
=0.0 �chain curves�, I=0.5 �dashed curves�, and I=1.0 �solid
curves� with �=1.0, �=0.5, and J=0.0. Figure 2�a� shows
that the � dependence of �q is very weak. We note in Fig.
2�b� that for I=0.5 and I=1.0, 
q

2 is linearly increased with
increasing �2 though 
q

2 is independent of � for I=0.0. Fig-
ure 2�c� shows that with increasing �2, Sq is increased with
broad maxima at �2�0.8 for I=1.0 and at �2�1.5 for I
=0.5. With increasing �2 from �2=0, in contrast, gq is de-
creased for I=0.5 and I=1.0 with broad minima, whereas gq
is independent of �2 for I=0.0. For larger I, Sq, and gq have
stronger �2 dependence.

� dependence. Figures 3�a�–3�d� show �q, 
q
2, Sq, and gq,

respectively, plotted as a function of �2 for I=0.0 �chain
curves�, I=0.5 �dashed curves�, and I=1.0 �solid curves�
with �=1.0, �=0.5, and J=0.0. With increasing �, �q has no
changes although 
q

2 is linearly increased. With increasing �2

-2 -1 0 1 20

0.5

1

1.5

x

p(
x)

I=0.0, J=0.0
I=0.0, J=0.5

I=0.5, J=0.5

FIG. 1. �Color online� Stationary distribution p�x� for �I ,J�
= �0.0,0.0�, �0.0,0.5�, and �0.5,0.5� with �=1.0, �=0.5, and �
=0.5, calculated by the FPE �Eqs. �34� and �35�� �solid curves� and
by DSs for the coupled Langevin model �Eqs. �9� and �10�� �dashed
curves�, results of FPE and DSs being indistinguishable.
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from �2=0.0, Sq �gq� is significantly increased �decreased�.
This trend is more significant for I=0.0 than for I=0.5 and
I=1.0.

I dependence. The I dependence of �q, 
q
2, Sq, and gq are

shown in Figs. 4�a�–4�d� for �=0.0 �chain curves�, �=0.5
�dashed curves�, and �=1.0 �solid curves� with �=1.0. The
gradient of �q versus I is slightly larger for larger �. In the
case of �=0.0, 
q

2, Sq, and gq are independent of I �see Eqs.
�56� and �72��. With increasing I for finite �, Sq is increased
while gq is decreased.

J dependence. We show the J dependence of �q, 
q
2, Sq,

and gq in Figs. 5�a�–5�d�, for I=0.0 �chain curves�, I=0.5
�dashed curves�, and I=1.0 �solid curves� with �=1.0, �
=0.5, �=0.5, and N=100. We note that �q is independent of

J. With increasing J, 
q
2 and Sq are linearly decreased

whereas gq is increased.
N dependence. Figure 6 shows the Tsallis entropy per el-

ement, Sq
�N� /N, given by �Eq. �55��

Sq
�N�

N
= Sq

�1� −
1

2
�N − 1��q − 1��Sq

�1��2 + ¯ �75�

for �=0.0 �dotted curve�, �=0.1 �solid curve�, �=0.5
�dashed curve�, and �=1.0 �chain curve� with �=1.0, �
=0.5, I=0.0, and J=0.0. Note that for �=0.0 �q=1.0�, the
system is extensive because S1

�N� /N=S1
�1�. For finite �, how-

ever, it is nonextensive: Sq
�N� /N is more significantly de-
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FIG. 3. �Color online� The �2 dependence of �a� �q, �b� 
q
2, �c�

Sq, and �d� gq for I=0.0 �chain curves�, I=0.5 �dashed curves�, and
I=1.0 �solid curves� with �=1.0, �=0.5, and J=0.0. Dotted curves
in �a� and �b� express the analytical result given by Eqs. �84� and
�85� for I=1.0.
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�=1.0 �solid curves� with �=1.0, �=0.5, and J=0.0. Dotted curves
in �a� and �b� express the analytical result given by Eqs. �84� and
�85� for �=1.0.
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in �a� and �b� express the analytical result given by Eqs. �84� and
�85� for I=1.0.
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creased for larger �, though the generalized Fisher informa-
tion entropy gq is extensive �Eq. �69��.

F. Dynamical properties

1. Analytical method for the FPE

In order to discuss the dynamical properties of the entro-
pies, we must calculate the time-dependent probability
p�x , t�, solving the FPE given by Eq. �26�. In the case of q
=1.0, we may obtain the exact solution of the Gaussian dis-
tribution given by

p�x,t� =
1

�2�
1�t�2
e−�x − �1�t��2/2
1�t�2

, �76�

where �1�t� and 
1�t�2 satisfy equations of motion given by

d�1�t�
dt

= − ��1�t� + I , �77�

d
1�t�2

dt
= − 2�� + Ĵ�
1�t�2 + �2. �78�

In order to obtain an analytical solution of the FPE for q
�1.0, we have adopted the following method.

�1� Starting from an equation of motion for the nth q
moment of Eq�xn� given by

dEq�xn�
dt

=
d

dt
� Pq�x,t�xndx �79�

=
q

cq
� � �p�x,t�

�t
�p�x,t�q−1xndx −

1

cq
�dcq

dt
�Eq�xn� , �80�

dcq

dt
= q� � �p�x,t�

�t
�p�x,t�q−1dx , �81�

we have obtained equations of motion for �q�t� �=Eq�x�� and

q�t�2 �=Eq�x2�−E�x�2�, valid for O��2� and O��2�, as given
by �30�

d�q�t�
dt

� − ��q�t� + I , �82�

d
q�t�2

dt
� − 2�� + Ĵ�
q�t�2 + �2�q�t�2 + �2. �83�

Equations �82� and �83� lead to the stationary solution given
by

�q =
I

�
, �84�


q
2 =

��2�q
2 + �2�

2�� + Ĵ�
=

��2I2/�2 + �2�

2�� + Ĵ�
. �85�

�2� We rewrite the distribution of p�x� given by Eqs.
�30�–�35� in terms of �q, 
q

2 and q, as

p�x� =
1

Zq

1 − �1 − q�� x2

22��1/�1−q�

eY�x�, �86�

with

Y�x� = � �3 − q��q

�2�q − 1�2�tan−1���q − 1�
22 x� , �87�

2 = �3 − q

2
�
q

2 − �q − 1

2
��q

2, �88�

where Zq expresses the normalization factor �Eq. �35��. In
deriving Eqs. �86�–�88�, we have employed relations given
by

�2 =
2�q − 1��� + Ĵ�

�3 − q�
, �89�

�2 = 2�� + Ĵ��
q
2 −

�q − 1��q
2

�3 − q�
� , �90�

which are obtained from Eqs. �30�, �84�, and �85�.
�3� Then we have assumed that a solution of p�x , t� of the

FPE given by Eq. �26� is expressed by Eqs. �86�–�88� in
which stationary �q and 
q

2 are replaced by time-dependent
�q�t� and 
q�t�2 with equations of motion given by Eqs. �82�
and �83�.

Dotted curves in the frames �a� and �b� of Figs. 3–6 ex-
press the results of stationary �q and 
q

2 calculated by Eqs.
�84� and �85� for some typical sets of parameters. They are in
good agreement with those shown by solid curves obtained
with the use of the stationary distribution of p�x� given by
Eq. �34�.

As we will show, the approximate, analytical method
given by Eqs. �82�, �83�, and �86�–�88� provides fairly good
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FIG. 6. The N dependence of the Tsallis entropy per element,
Sq

�N� /N, for �=0.0 �dotted curve�, �=0.1 �solid curve�, �=0.5
�dashed curve�, and �=1.0 �chain curve� with �=1.0, �=0.5, I
=0.0, and J=0.0.
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results for dynamics of �q�t�, 
q�t�2, and Sq�t�, and also for
that of gq�t� except for the transient period.

2. Partial difference equation method

In order to examine the validity of the analytical method
discussed above, we have adopted also the numerical
method, using the PDE derived from Eq. �26�, as given by

p�x,t + b� = p�x,t� + �� + Ĵ +
�2

2
�bp�x,t� + 
x�� + Ĵ +

3�2

2
�

− u�t��� b

2a
��p�x + a� − p�x − a�� + ��2

2
x2 +

�2

2
�

�� b

a2��p�x + a,t� + p�x − a,t� − 2p�x,t�� , �91�

with

u�t� = Ĵ�q�t� + I�t� , �92�

where a and b denote incremental steps of x and t, respec-
tively.

We impose the boundary condition

p�x,t� = 0 for 	x	 � xm, �93�

with xm=5, and the initial condition of p�x ,0�= p0�x�, where
p0�x� is the stationary distribution given by Eqs. �34� and
�35�. We have chosen parameters of a=0.05 and b=0.0001
such as to satisfy the condition ��2xm

2 b /2a2��1 /2, which is
required for stable, convergent solutions of the PDE.

3. Model calculations

Response to I�t�. We apply the pulse input signal given by

I�t� = �I��t − 2���6 − t� , �94�

where �I=1.0 and ��t� denotes the Heaviside function:
��t�=1 for t�0 and zero otherwise. Figure 7 shows the
time-dependent distribution at various t for �=1.0, �=0.5,
�=0.5, and J=0.0. Solid and dashed curves express the re-
sults of the PDE method and the analytical method �Sec.
II F 1�, respectively. When input of �I is applied at t=2.0,
the distribution is gradually changed, moving rightward. The
results of the analytical method are in good agreement with
those obtained by the PDE method, except for t=3 and t
=7.

This change in p�x , t� induces changes in �q�t�, 
q�t�2,
Sq�t�, and gq�t�, whose time dependences are shown in Figs.
8�a� and 8�b�, solid and dashed curves expressing the results
of the PDE method and the analytical method, respectively.
By an applied pulse input, �q, 
q

2, and Sq are increased while
gq is decreased. The result for Sq�t� of the analytical method
is in fairly good agreement with that obtained by the PDE
method. The calculated gq�t� of the analytical method is also
in good agreement with that of the PDE method besides near
the transient periods at t�2 and t�6 just after the input
signal is on and off. This is expected due to the fact that gq�t�
given by Eq. �71� is sensitive to a detailed form of p�x , t�
because it is expressed by an integration of ��p�x , t� /�x�2

over p�x , t�, while Sq�t� is obtained by a simple integration of
p�x , t�q.

For a comparison, we show by chain curves the results of
the PDE method when the step input given by

I�t� = �I��t − 2� �95�

is applied. The relaxation time of Sq and gq is about 2.0.
It is noted that input signal for �=0 induces no changes in

Sq�t� and gq�t�, which has been already realized in the sta-
tionary state as shown by chain curves in Figs. 4�c� and 4�d�.
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FIG. 7. �Color online� The time-dependent probability distribu-
tion p�x , t� when an input pulse given by I�t�=�I��t−2���6− t� is
applied with �I=1.0, �=1.0, �=0.5, and �=0.5: Solid curves ex-
press the results obtained by the PDE method and chain curves
denote those by the analytical method described in Sec. II F 1.
Curves are consecutively shifted downward by 0.25 for clarity of
the figure.
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FIG. 8. �Color online� The time dependence of �a� �q�t� and

q�t�2 and �b� Sq�t� and gq�t� for an input of I�t�=�I��t−2���6
− t� with �I=1.0, �=1.0, �=0.5, �=0.5, and J=0.0. Solid curves
denote the results obtained by the PDE method and dashed curves
those obtained by the analytical method described in Sec. II F 1.
Chain curves denote the results of the PDE method for an input
signal given by I�t�=�I��t−2�, results of gq and �q being divided
by a factor of 10.
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Response to ��t�. We modify the relaxation rate as given
by

� = 1.0 + ����t − 2���6 − t� , �96�

which expresses an application of an external force of �F
�=−��x� at 2� t�6 with ��=0.5. Figures 9�a� and 9�b�
show the time dependence of 
q

2, Sq, and gq with �=0.5, �
=0.5, I=0.0, and J=0.0 for which �q=0. Solid and dashed
curves express the results of the PDE method and the ana-
lytical method, respectively. When an external force is ap-
plied, 
q

2 and Sq are decreased whereas gq is increased. The
results of the analytical method are in good agreement with
those of the PDE method. The relaxation times of Sq and gq
are 0.47 and 0.53, respectively.

III. DISCUSSION

A. Maximum-entropy method

In Sec. II we have discussed the information entropies by
using the probability distribution obtained by the FPE for the
Langevin model. It is worthwhile to compare it with the
probability distribution derived by the MEM. The variational
condition for the Tsallis entropy given by Eq. �1� is taken
into account with the three constraints: A normalization con-
dition and q moments of x and x2, as given by �14,17,18,36�

1 =� p�x�dx , �97�

�q = Eq�x� =� Pq�x�xdx , �98�


q
2 = Eq��x − �q�2� =� Pq�x��x − �q�2dx , �99�

where Eq�¯� expresses the average over the escort probabil-
ity of Pq�x� given by

Pq�x� =
p�x�q

cq
, �100�

cq =� p�x�qdx , �101�

the entropic index q being assumed to be 0�q�3. After
some manipulations, we get the q-Gaussian �non-Gaussian�
distribution given by �36�

p�x� =
1

Zq
expq�−

�x − �q�2

2�
q
2 � , �102�

with

� = �3 − q

2
� , �103�

Zq =� expq�−
�x − �q�2

2�
q
2 �dx �104�

=�2�
q
2

q − 1
�1/2

B�1

2
,

1

q − 1
−

1

2
� for 1 � q � 3, �105�

=�2�
1 for q = 1, �106�

=�2�
q
2

1 − q
�1/2

B�1

2
,

1

1 − q
+ 1� for 0 � q � 1. �107�

In the limit of q→1, p�x� in Eq. �102� becomes the Gaussian
distribution,

p�x� =
1

�2�
1

e−�x − �1�2/2
1
2
. �108�

The probability distribution given by Eq. �102� derived from
the MEM is different from that of Eq. �34� obtained by the
FPE although both expressions are equivalent for �q= I=J
=0 with �
q

2=2. Note that the former is defined for 0�q
�3 while the latter is valid for 1�q�3.

A comparison between the probability distributions ob-
tained by the FPE and MEM is made in Figs. 10 and 11.
Figure 10�a� shows the probability distributions calculated
by the FPE of the Langevin model for �=0.0, 0.5, 1.0, 1.5,
and 2.0, which yield �q ,
q

2�= �1.0,0.125�, �1.222,0.25�,
�1.667,0.625�, �2.059,1.25�, and �2.333,2.125�, respectively,
with �q=1.0 for I=1.0, �=1.0, �=0.5, and J=0.0 �Eqs. �84�
and �85��. Figure 10�b� shows corresponding distributions
calculated by the MEM with the respective parameters of �q,

q, and q. For q=1.0 ��=0.0�, both the distributions are
Gaussian centered at x=�q=1.0. For q�1.0, p�x� of the FPE
becomes asymmetric with respect to its peak while that of
the MEM is still symmetric. The peak position of p�x� of the
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FIG. 9. �Color online� The time dependence of �a� 
q�t�2 and �b�
Sq�t� and gq�t� for ��t�=1.0+����t−2���6− t�: ��=0.5, �=0.5,
�=0.5, I=0.0, and J=0.0. Solid curves denote the results obtained
by the PDE method and dashed curves those obtained by the ana-
lytical method described in Sec. II F 1, results of gq being divided
by a factor of 10.
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MEM is at x=�q=1.0 independent of q while that of the FPE
moves leftward with increasing �. It is noted that p�x� of the
FPE for ��0 and �=0 given by Eq. �39� has a peak at x
=�q /q.

Figure 11�a� shows p�x� of the FPE for various inputs of
I=0.0, 0.5, 1.0, 1.5, and 2.0, which yield ��q ,
q

2�
= �0.0,0.125�, �0.5,0.25�, �1.0,0.625�, �1.5,1.25�, and
�2.0,2.125�, respectively, for �=1.0, �=1.0, �=0.5, and J
=0.0 �Eqs. �84� and �85��: Corresponding p�x� of the MEM
with the respective parameters of �q, 
q, and q�=1.667� are
plotted in Fig. 11�b�. For �q=0.0, both the distributions
agree. Although centers of both distributions move rightward
with increasing �q, their profiles and peak positions are dif-
ferent between the two distributions. We note that the mag-
nitude of p�x� at x�0.0 of the FPE is smaller than that of the
MEM for �q�0.0.

The information entropies calculated with the use of the
distribution given by Eq. �102� are summarized in the Ap-
pendix. One of the advantages of the MEM is that its distri-
bution is explicitly specified by the parameters of ��1 ,�2�
= ��q ,
q

2� while that of the FPE is given in an implicit way
�cf. Eqs. �86�–�88��. We may discuss the upper bound of
estimation errors by the Cramér-Rao inequality, which is
shown to be expressed by the extended Fisher entropy �Eq.
�A19�� but not by the generalized Fisher entropy �Eq. �A6��.

In order to discuss the dynamics within the MEM for q
�1.0, we have once tried to obtain an analytic solution of its
distribution p�x , t�, assuming that it is given by Eq. �102�,

p�x,t� = � Aq

�
q�t�2�expq�−
�x − �q�t��2

2�
q�t�2 � , �109�

where the q-dependent coefficient Aq is determined from
Eqs. �105�–�107�, and equations of motion for �q�t� and

q�t�2 are derived so as to meet the FPE after Refs. �17,18�.
Unfortunately, we could not uniquely determine them: We
obtained two equations for d�q�t� /dt and three equations for
d
q�t�2 /dt which are mutually not consistent �except for q
=1.0�. This implies that the exact analytic solution of the
FPE is not given by Eq. �109�. Indeed, the exact solution for
�=J=0 in Eq. �26� does not have a functional form given by
Eq. �109� �37�.

B. Entropy flux and entropy production

It is interesting to discuss the entropy flux and entropy
production from the time derivative of the Tsallis entropy
given by

dSq�t�
dt

= − � q

q − 1
�� p�x,t�q−1� �p�x,t�

�t
�dx �110�

=QF + QA + QM , �111�

with

QF = q� p�x,t�q�dF�x�
dx

�dx

+ q�q − 1�� p�x,t�q� � ln p�x,t�
�x

�F�x�dx , �112�
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FIG. 11. Probability distributions p�x� calculated by �a� the FPE
and �b� MEM for ��q ,
q

2�= �0.0,0.125�, �0.5,0.25�, �1.0,0.625�,
�1.5,1.25�, and �2.0,2.125�, respectively, with �=1.0, �=1.0, �
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QA = ��2q

2
�� p�x,t�q� � ln p�x,t�

�x
�2

dx , �113�

QM = ��2

2
�� p�x,t�q
q� � ln p�x,t�

�x
�2

G�x�2 − �dG�x�
dx

�2

−
d2G�x�

dx2 G�x��dx . �114�

Here QF denotes the entropy flux, and QA and QM stand for
entropy productions due to additive and multiplicative noise,
respectively.

By using the stationary distribution given by Eq. �46�, we
obtain QF, QA, and QM in the stationary state with I=J=0
�i.e., without couplings and external input�,

QF = −
�q

Zq
q � 2
q

2

q − 1
�1/2

B�1

2
,

1

q − 1
+

1

2
�

+
�q�q − 1�


q
2Zq

q � 2
q
2

q − 1
�3/2

B�3

2
,

1

q − 1
+

1

2
� , �115�

QA =
�2q

2
q
4Zq

q� 2
q
2

q − 1
�3/2

B�3

2
,

1

q − 1
+

3

2
� , �116�

QM =
�2q

2
q
4Zq

q� 2
q
2

q − 1
�5/2

B�5

2
,

1

q − 1
+

1

2
�

−
�2

2Zq
q� 2
q

2

q − 1
�1/2

B�1

2
,

1

q − 1
+

1

2
� , �117�

where Zq is given by Eq. �47�. Equations �115�–�117� satisfy
the stationary condition, QF+QA+QM =0.

It is worthwhile to examine the limit of �→0 �q→1.0�,
in which Eqs. �110� and �115�–�117� yield

dS1�t�
dt

= −� �p�x,t�
�t

ln p�x,t�dx �118�

=QF + QA, �119�

with

QF =� p�x,t��dF�x�
dx

�dx , �120�

QA = ��2

2
�� p�x,t�� � ln p�x,t�

�x
�2

dx . �121�

With noticing the relation lim	z	→����z+a� /��z�za�=1 �38�,
we may see that Eqs. �120� and �121� lead to QF=−QA=−�
and dS1 /dt=0 in the limit of q→1.

In the opposite limit of �→0, Eqs. �115�–�117� yield that
each of QF, QA, and QM is proportional to 1 /��q−1� and then
divergent in this limit, though QF+QA+QM =0. It is noted
that QA=� for �→0 and �→0 �2–4�.

We present some model calculations of QF, QA, and QM in
the stationary state, which are shown in Fig. 12 as a function
of � for �=0.1 �dashed curves�, �=0.5 �chain curves�, and

�=1.0 �solid curves�. We note that QF�0 and QA+QM �0.
With increasing �, QF is decreased in the case of �=0.1,
while it is increased in the cases of �=0.5 and 1.0. Bag �4�
showed that QF is always decreased with increasing � which
disagrees with our result mentioned above: Equations
�115�–�117� are rather different from Eqs. �36� and �37� in
Ref. �4� where non-Gaussian properties of the distribution
are not properly taken into account.

C. q-moment and normal-moment methods

In Refs. �30,32�, we have discussed equations of motion
for normal moments of � �=E�x�� and 
2 �=E��x−��2�� �Eq.
�50�� in the Langevin model with J=0, as given by

d��t�
dt

= − �� −
�2

2
���t� + I , �122�

d
�t�2

dt
= − 2�� − �2�
�t�2 + �2��t�2 + �2. �123�

These equations of motion are rather different from those for
the q moments of �q and 
q

2 given by Eqs. �82� and �83�.
Indeed, Eqs. �122� and �123� yield stationary normal mo-
ments given by

� =
I

�� − �2/2�
, �124�


2 =
��2�2 + �2�
2�� − �2�

, �125�

which are different from the stationary q moments of �q and

q

2 given by Eqs. �84� and �85�, and which diverge at �
=�2 /2 and �=�2, respectively.

The time dependence of ��t� and 
�t�2 becomes consid-
erably different from those of �q�t� and 
q�t�2 for an appre-
ciable value of �. Figures 13�a�–13�d� show some examples
of �q�t�, 
q�t�2, ��t�, and 
�t�2, respectively, when a pulse
input given by Eq. �94� is applied with �=0.2 �chain curves�,
�=0.5 �dashed curves�, and �=0.8 �solid curves�. Although
�q�t� is independent of �, 
q�t�2, ��t�, and 
�t�2 are much
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FIG. 12. �Color online� The � dependence of entropy flux �QF�,
and entropy productions by additive noise �QA� and multiplicative
noise �QM� for �=0.1 �dashed curves�, �=0.5 �chain curves�, and
�=1.0 �solid curves� with �=1.0, I=0.0, and J=0.0.
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increased at 2� t�6 for larger �. In particular, 
�t�2 is sig-
nificantly increased because of the �2 term in Eq. �123�.

D. Effects of colored noise

We have so far considered additive and multiplicative
white noise. In our recent paper �33�, we have taken into
account the effect of colored noise by employing the
functional-integral method. We have assumed the Langevin
model subjected to additive ��� and multiplicative �� col-
ored noise given by

dx�t�
dt

= − �x�t� + ��t� + x�t��t� + I�t� , �126�

with

d��t�
dt

= −
1

�a
���t� − ���t�� , �127�

d�t�
dt

= −
1

�m
��t� − ���t�� , �128�

where �a and � ��m and �� express the relaxation time and
strength of additive �multiplicative� noise, respectively, and �
and � stand for independent zero-mean Gaussian white
noise. Formally the probability distribution of p�x ,� , , t�
for the Langevin model given by Eqs. �126�–�128� is ex-
pressed by the multivariate FPE. Applying the functional-
integral method to the Langevin model, we have obtained the
effective one-variable FPE, from which the effective Lange-
vin model is derived as �33�

dx�t�
dt

= − �x�t� + �̃��t� + �̃�t�x�t���t� + I�t� , �129�

with

�̃2 =
�2

�1 + ��a�
, �130�

�̃�t�2 =
�2

�1 + �mI�t�/��t��
. �131�

Here ��t� is given by Eq. �122� with �= �̃, from which �̃ is
determined in a self-consistent way.

In the stationary state where �= I / ��− �̃2 /2� given by Eq.
�124� with �= �̃, we obtain �̃ from Eq. �131�,

�̃2 =
�2

�1 + �m�� − �̃2/2��
�132�

=
1

�m
��1 + ��m� − ��1 + ��m�2 − 2�m�2� . �133�

We get an approximate expression given by �33�

�̃2 �
�2

�1 + ��m�
for �m�2/2�1 + ��m�2 � 1, �134�

which is shown to be a good approximation both for
�m� �1 /� ,2 /�2� and �m� �1 /� ,�2 /2�2� �33�. Equations
�130� and �134� show that effects of additive and multiplica-

tive colored noise are described by �̃2 and �̃2 which are
reduced by factors of �1+��a� and �1+��m�, respectively,
from original values of �2 and �2.

The �a dependence of Sq and gq is plotted in Figs. 14�c�
and 14�d� with �m=0.0 for I=0.0 �chain curves�, I=0.5
�dashed curves�, and I=1.0 �solid curves� with �=1.0, �
=0.5, and �=0.5. We note that with increasing �a, gq is much
increased for smaller I whereas Sq is much decreased for
smaller I. The dependence of Sq and gq on �a may be under-
stood from their � dependence shown in Figs. 3�c� and 3�d�.
The �m dependence of Sq and gq is plotted in Figs. 14�c� and
14�d� with �a=0.0 with �=1.0, �=0.5, and �=0.5. With in-
creasing �m, Sq�gq� is decreased �increased� for I=0.5 and I
=1.0 while no changes for I=0.0. This behavior may be ex-
plained from Figs. 2�c� and 2�d� showing the � dependence
of Sq and gq.
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FIG. 13. The time dependence of q moments of �a� �q�t� and �b�

q�t�2, and those of normal moments of �c� ��t� and �d� 
�t�2 with
�=0.2 �chain curves�, �=0.5 �dashed curves�, and �=0.8 �solid
curves� for an input given by I�t�=�I��t−2���6− t� with �I=1.0,
�=1.0, �=0.5, and J=0.0. The vertical scale of �b� is different from
those of �a�, �c�, and �d�.
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IV. CONCLUSION

We have discussed stationary and dynamical properties of
the Tsallis and Fisher entropies in nonextensive systems. Our
calculation for the N-unit coupled Langevin model subjected
to additive and multiplicative noise has shown the following:

�i� The dependence of Sq and gq on the parameters of �, �,
�, I, J, and N in the coupled Langevin model are clarified
�Figs. 2–6�.

�ii� Dynamical properties are well described by the ana-
lytical method for the FPE proposed in Sec. II F 1, which
shows that the relaxation times in transient responses of Sq
and gq to a change in � are short ���0.5� while those in I are
fairly long ���2�.

The difference between the parameter dependence of Sq
and gq in the item �i� arises from the fact that Sq provides us
with a global measure of ignorance while gq a local measure
of positive amount of information �1�.

We have calculated the information entropies also by us-
ing the probability distribution derived by the MEM, from
which we obtain the following:

�iii� p�x� derived by the MEM is rather different from that
of the FPE for �q�0 �Figs. 10 and 11�, for which the infor-
mation entropies of the MEM are independent of �q while
those of the FPE depend on �q �i.e., I�.

�iv� The Cramér-Rao inequality is expressed by the ex-
tended Fisher entropy �Eq. �A19�� which is different from the
generalized Fisher entropy �Eq. �A6�� derived from the gen-
eralized Kullback-Leibler divergence �Eq. �6��.

The item �iv� has not been clarified in previous studies on
the Fisher entropies in nonextensive systems �13–24�.

The Langevin model has been employed for a study of a
wide range of stochastic systems �29�. Quite recently, the
present author has proposed the generalized rate-code model
for neuronal ensembles which is described by the coupled
Langevin-type equation �39,40�. It would be interesting to
discuss the dynamics of information entropies in such neural
networks, which is left for our future study.
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APPENDIX: MAXIMUM-ENTROPY METHOD

By using the probability distribution given by Eq. �102�
derived by the MEM, we have calculated the information
entropies, which are summarized in this appendix.

1. Tsallis entropy

With the use of Eqs. �1� and �102�, the Tsallis entropy is
given by

Sq = �1

2
��1 + ln�2�
q

2�� for q = 1, �A1�

=�1 − cq

q − 1
� for q � 1, �A2�

with

cq =
1

Zq
q�2�
q

2

q − 1
�1/2

B�1

2
,

q

q − 1
−

1

2
� for 1 � q � 3,

�A3�

=
1

Zq
q�2�
q

2

1 − q
�1/2

B�1

2
,

q

1 − q
+ 1� for 0 � q � 1,

�A4�

which yield

cq = �Zq
1−q for 0 � q � 3. �A5�

Here Zq for 0�q�1 and 1�q�3 are given by Eqs. �105�
and �107�, respectively.

2. Generalized Fisher entropy

The distribution p�x� given by Eq. �102� is characterized
by two parameters of ��1 ,�2�= ��q ,
q

2�. By using Eqs. �4�
and �102�, we obtain the component of the generalized
Fisher information matrix G given by �16–24�

gij = qE
� � ln p�x�
��i

�� � ln p�x�
�� j

�� �A6�

=qE��Xi − E�Xi���Xj − E�Xj��� for i, j = 1,2, �A7�

with

Xi =
�

��i
ln
expq�−

�x − �q�2

2�
q
2 �� , �A8�

where E�¯� denotes the average over the q-Gaussian distri-
bution of p�x� whereas Eq�¯� stands for the average over the
escort distribution of Pq�x�. Substituting the probability
given by Eq. �102� to Eq. �A6�, we obtain

g11 = q� p�x�� � ln p�x�
��q

�2

dx �A9�

=q� p�x�� � ln p�x�
�x

�2

dx �A10�

=� 2q

�
q
2�q − 1��

B�3

2
,

1

�q − 1�
+

1

2
�

B�1

2
,

1

�q − 1�
−

1

2
� for 1 � q � 3,

�A11�

=
1


q
2 for q = 1, �A12�
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=� 2q

�
q
2�1 − q��

B�3

2
,

1

�1 − q�
− 1�

B�1

2
,

1

�1 − q�
+ 1� for 0 � q � 1,

�A13�

which yield

g11 =
1


q
2 for 0 � q � 3. �A14�

A similar calculation leads to the �2,2� component given by

g22 = q� p�x�� � ln p�x�
�
q

2 �2

dx �A15�

=�3 − q

4
q
4 � for 0 � q � 3. �A16�

The generalized Fisher information matrix is expressed by

G =�
1


q
2 0

0
�3 − q�

4
q
4
� ,

whose inverse is given by

G−1 = �
q
2 0

0
4
q

4

�3 − q�
� .

In the limit of q=1, the matrix reduces to

G =�
1


1
2 0

0
1

2
1
4
� for q = 1.

3. Extended Fisher entropy: Cramér-Rao inequality

Next we discuss the Cramér-Rao inequality in nonexten-
sive systems. For the escort distribution given by Eq. �100�
which satisfies Eqs. �98� and �99� with

1 = Eq�1� =� Pq�x�dx , �A17�

we get the Cramér-Rao inequality �1,16,20,21�

V � G̃−1. �A18�

Here V denotes the covariance error matrix whose explicit

expression will be given shortly, and G̃ is referred to as the
extended Fisher information matrix whose components are
expressed by

g̃ij = Eq
� � ln Pq�x�
��i

�� � ln Pq�x�
�� j

�� for i, j = 1,2,

�A19�

=Eq��X̃i − Eq�X̃i���X̃j − Eq�X̃j��� , �A20�

with

X̃i =
�

��i
�q ln p�x�� �A21�

=q�Xi − E�Xi�� , �A22�

Xi being given by Eq. �A8�. Note that g̃ij is different from gij
given by Eq. �A6� except for q=1.0. The �1,1� component of

G̃ is given by

g̃11 = Eq
� � ln Pq�x�
��q

�2� �A23�

=�q2

cq
�� p�x�q� � ln p�x�

�x
�2

dx �A24�

=� 2q2

�
q
2�q − 1��

B�3

2
,

q

�q − 1�
+

1

2
�

B�1

2
,

q

�q − 1�
−

1

2
� for 1 � q � 3,

�A25�

=
1


q
2 for q = 1, �A26�

=� 2q2

�
q
2�1 − q��

B�3

2
,

q

�1 − q�
− 1�

B�1

2
,

q

�1 − q�
+ 1� for 1/2 � q � 1,

�A27�

which lead to

g̃11 =
q�q + 1�

�3 − q��2q − 1�
q
2 for 1/2 � q � 3. �A28�

Similarly, the �2,2� component of G̃ is given by

g̃22 = Eq
� � ln Pq�x�
�
q

2 �2� �A29�

=
�q + 1�

4�2q − 1�
q
4 for 1/2 � q � 3. �A30�

The extended Fisher information matrix G̃ is expressed by

G̃ =�
q�q + 1�

�3 − q��2q − 1�
q
2 0

0
�q + 1�

4�2q − 1�
q
4
� ,

whose inverse is given by
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G̃−1 =�
�3 − q��2q − 1�
q

2

q�q + 1�
0

0
4�2q − 1�
q

4

�q + 1�
� .

A calculation of the �i , j� component �vij� of the covariance
error matrix V leads to

V = �
q
2 0

0
4
q

4

�5 − 3q�
� .

In the limit of q=1, the matrices reduce to

G̃−1 = G−1 = �
1
2 0

0 2
1
4 � for q = 1,

V = �
1
2 0

0 2
1
4 � for q = 1.

Chain and solid curves in Fig. 15�a� express the q depen-
dence of v11 /
q

2 and 1 / g̃11
q
2, respectively. When q is further

from unity, 1 / g̃11 is much decreased and it vanishes at q
=1 /2 and 3. The lower bond of v11 is expressed by the
Cramér-Rao relation because it is satisfied by g̃11,

v11 =
1

g11
�

1

g̃11

for 1/2 � q � 3. �A31�

Chain, dashed, and solid curves in Fig. 15�b� show v22 /
q
4,

1 /g22
q
4, and 1 / g̃22
q

4, respectively. It is noted that v22 di-
verges at q=5 /3. The following relations hold:

1

g22
� v22 �

1

g̃22

for 1/2 � q � 1, �A32�

v22 �
1

g̃22

�
1

g22
for 1 � q � 5/3. �A33�

Equation �A32� means that 1 /g22 cannot provide the lower
bound of v22. Equations �A31�–�A33� clearly show that the
lower bound of V is expressed by the extended Fisher infor-

mation matrix G̃, but not by the generalized Fisher informa-
tion matrix G.
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